from https://hit-alibaba.github.io/interview/basic/algo/Sorting.html
排序算法的评价
稳定性(keep original sequence for equal element)
稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。
计算复杂度(最差、平均、和最好表现)
依据串行(list)的大小(n)
好的表现是O(nlogn),
坏的行为是O(n2)。
对于一个排序理想的表现是O(n)。
仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。
所有基于比较的排序的时间复杂度至少是 O(nlogn)。
常见排序算法
稳定排序:
- 冒泡排序(Bubble Sort) — O(n²)
- 插入排序(Insertion Sort)— O(n²)
- 桶排序(Bucket Sort)— O(n); 需要 O(k) 额外空间
- 计数排序 (Counting Sort) — O(n+k); 需要 O(n+k) 额外空间
- 合并排序(Merge Sort)— O(nlogn); 需要 O(n) 额外空间
- 二叉排序树排序 (Binary tree sort) — O(n log n) 期望时间; O(n²)最坏时间; 需要 O(n) 额外空间
- 基数排序(Radix sort)— O(n·k); 需要 O(n) 额外空间
不稳定排序
- 选择排序(Selection Sort)— O(n²)
- 希尔排序(Shell Sort)— O(nlogn)
- 堆排序(Heapsort)— O(nlogn)
- 快速排序(Quicksort)— O(nlogn) 期望时间, O(n²) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
快排
快排是经典的 divide & conquer 问题,如下用于描述快排的思想、伪代码、代码、复杂度计算以及快排的变形。
快排的思想
如下的三步用于描述快排的流程:
- 在数组中随机取一个值作为标兵(pivot)
- 对标兵左、右的区间进行划分(将比标兵大的数放在标兵的右面,比标兵小的数放在标兵的左面,如果倒序就反过来)
- 重复如上两个过程,直到选取了所有的标兵并划分(此时每个标兵决定的区间中只有一个值,故有序)
代码
// quick sort
class Solution {
func quickSort(nums: Array<Int>) -> Array<Int> {
if nums.isEmpty {
return nums
}
var nums = nums
var left = 0
var right = nums.count - 1
while left < right {
let mid = left + (right - left) / 2
let pivot = nums[mid]
// if left value < pivot, just skip
while left < right, nums[left] < pivot {
left += 1
}
// if right value > pivot, just skip
while right > left, nums[right] > pivot {
right -= 1
}
if left < right {
swap(&nums[left], &nums[right])
left += 1
right -= 1
}
}
return nums
}
}
let nums = [2, 2, 2, 2, 2]
let res = Solution().quickSort(nums: nums)
复杂度分析
在最好的情况下,每次 partition 都会把数组一分为二,所以时间复杂度 T(n) = 2T(n/2) + O(n)
解为 T(n) = O(nlog(n))
在最坏的情况下,数组刚好和想要的结果顺序相同,每次 partition 到的都是当前无序区中最小(或最大)的记录,因此只得到一个比上一次划分少一个记录的子序列。T(n) = O(n) + T(n-1)
解为 T(n) = O(n²)
在平均的情况下,快排的时间复杂度是 O(nlog(n))
变形 quick select
可以利用快排的 PARTITION 思想求数组中第K大元素这样的问题,步骤如下:
- 在数组中随机取一个值作为标兵,左右分化后其顺序为X
- 如果 X == Kth 说明这就是第 K 大的数
- 如果 X > Kth 说明第 K 大的数在标兵左边,继续在左边寻找第 Kth 大的数
- 如果 X < Kth 说明第 K 大的数在标兵右边,继续在右边需找第 Kth - X 大的数
这个问题的时间复杂度是 O(n)
T(n) = n + n/2 + n/4 + ... = O(n)
参考资料