Backpack II

Description

Given n items with size Ai and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?

Notice
You cannot divide item into small pieces 
and the total size of items you choose should smaller or equal to m.
Example
Given 4 items with size [2, 3, 5, 7] 
and value [1, 5, 2, 4], 
and a backpack with size 10. 
The maximum value is 9.

Challenge
O(n x m) memory is acceptable,
can you do it in O(m) memory?

Lintcode_ladder

Method

  1. x
  2. x

Example

  1. 1
class Solution {
public:
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A & V: Given n items with size A[i] and value V[i]
     * @return: The maximum value
     */
    // Version 1, O(n^2) S(n^2)
    int backPackII(int m, vector<int> A, vector<int> V) {
        // write your code here
        if (A.empty() || V.empty() || A.size() != V.size() || m <= 0) {
            return 0;
        }
        int lena = A.size();
        vector<vector<int>> dp(lena + 1, vector<int>(m + 1, -1));
        dp[0][0] = 0;
        for (int i = 0; i < lena; ++i) {
            for (int j = 0; j < m + 1; ++j) {
                dp[i+1][j] = dp[i][j];
                // i means the number of size we selected
                // j means the volume of current pack
                // dp[i][j-A[i]] means we want to use A[i] in here
                // the rest volume j-A[i] has matched size with value 
                if (j >= A[i] && dp[i][j-A[i]] > -1) {
                    dp[i+1][j] = max(dp[i][j], dp[i][j-A[i]] + V[i]);
                }
            }
        }
        int maxval = 0;
        for (int i = m; i >= 0; --i) {
            if (dp[lena][i] > 0) {
                maxval = max(maxval, dp[lena][i]);
            }
        }
        return maxval;
    }
    // Version 2, O(n^2) S(n)
    int backPackII(int m, vector<int> A, vector<int> V) {
        if (A.empty() || V.empty() || A.size() != V.size() || m <= 0) {
            return 0;
        }
        int lena = A.size();
        vector<int> dp(m + 1, 0);
        for (int i = 0; i < lena; ++i) {
            for (int j = m; j >= A[i]; --j) {
                dp[j] = max(dp[j], dp[j-A[i]] + V[i]);
            }
        }
        return dp[m];
    }
};

Similar problems

x

Tags

x

results matching ""

    No results matching ""