Combination Sum
Description
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
For example, given candidate set 2,3,6,7 and target 7, A solution set is: [7] [2, 2, 3]
Notice * All numbers (including target) will be positive integers. * Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak). * The solution set must not contain duplicate combinations.
Example given candidate set 2,3,6,7 and target 7, A solution set is: [ [7] [2, 2, 3] ]
Link
Method
- x
- x
Example
- 1
class Solution { public: /** * @param candidates: A list of integers * @param target:An integer * @return: A list of lists of integers */ vector<vector<int> > combinationSum(vector<int> &candidates, int target) { // write your code here vector<vector<int>> result; if (candidates.empty() || target < 0) { return result; } vector<int> row; // make sure ascending order sort(candidates.begin(), candidates.end()); helper(candidates, result, row, target, 0); return result; } private: void helper(vector<int>& nums, vector<vector<int>>& result, vector<int>& row, int target, int start ) { if (target == 0) { result.push_back(row); return; } // pruning // if (target < 0) { // return; // } int len = nums.size(); int dup = -1; for (int i = start; i < len; ++i) { // de-dup if (dup != -1 && dup == nums[i]) { continue; } // pruning int rest = target - nums[i]; if (rest < 0) { break; } row.push_back(nums[i]); // use i as the new index, we may reuse the current nums[i] helper(nums, result, row, rest, i); row.erase(row.begin() + row.size() - 1); dup = nums[i]; } return; } };
Similar problems
x
Tags
x