LFU Cache (Ladder)

Description

LFU (Least Frequently Used) is a famous cache eviction algorithm. For a cache with capacity k, if the cache is full and need to evict a key in it, the key with the lease frequently used will be kicked out.

Implement set and get method for LFU cache.

Example

Given capacity=3
set(2,2)
set(1,1)
get(2)
> 2
get(1)
> 1
get(2)
> 2
set(3,3)
set(4,4)
get(3)
> -1
get(2)
> 2
get(1)
> 1
get(4)
> 4

Lintcode_ladder

Method

  1. x
  2. x

Example

  1. 1
    public class LFUCache {
     private final Map<Integer, CacheNode> cache;
     private final LinkedHashSet[] frequencyList;
     private int lowestFrequency;
     private int maxFrequency;
     private final int maxCacheSize;
     // @param capacity, an integer
     public LFUCache(int capacity) {        // Write your code here
         this.cache = new HashMap<Integer, CacheNode>(capacity);
         this.frequencyList = new LinkedHashSet[capacity * 2];
         this.lowestFrequency = 0;
         this.maxFrequency = capacity * 2 - 1;
         this.maxCacheSize = capacity;
         initFrequencyList();
     }
     // @param key, an integer
     // @param value, an integer
     // @return nothing
     public void set(int key, int value) {
         // Write your code here
         CacheNode currentNode = cache.get(key);
         if (currentNode == null) {
             if (cache.size() == maxCacheSize) {
                 doEviction();
             }
             LinkedHashSet<CacheNode> nodes = frequencyList[0];
             currentNode = new CacheNode(key, value, 0);
             nodes.add(currentNode);
             cache.put(key, currentNode);
             lowestFrequency = 0;
         } else {
             currentNode.v = value;
         }
         addFrequency(currentNode);
     }
     public int get(int key) {
         // Write your code here
         CacheNode currentNode = cache.get(key);
         if (currentNode != null) {
             addFrequency(currentNode);
             return currentNode.v;
         } else {
             return -1;
         }
     }
     public void addFrequency(CacheNode currentNode) {
         int currentFrequency = currentNode.frequency;
         if (currentFrequency < maxFrequency) {
             int nextFrequency = currentFrequency + 1;
             LinkedHashSet<CacheNode> currentNodes = frequencyList[currentFrequency];
             LinkedHashSet<CacheNode> newNodes = frequencyList[nextFrequency];
             moveToNextFrequency(currentNode, nextFrequency, currentNodes, newNodes);
             cache.put(currentNode.k, currentNode);
             if (lowestFrequency == currentFrequency && currentNodes.isEmpty()) {
                 lowestFrequency = nextFrequency;
             }
         } else {
             // Hybrid with LRU: put most recently accessed ahead of others:
             LinkedHashSet<CacheNode> nodes = frequencyList[currentFrequency];
             nodes.remove(currentNode);
             nodes.add(currentNode);
         }
     }
     public int remove(int key) {
         CacheNode currentNode = cache.remove(key);
         if (currentNode != null) {
             LinkedHashSet<CacheNode> nodes = frequencyList[currentNode.frequency];
             nodes.remove(currentNode);
             if (lowestFrequency == currentNode.frequency) {
                 findNextLowestFrequency();
             }
             return currentNode.v;
         } else {
             return -1;
         }
     }
     public int frequencyOf(int key) {
         CacheNode node = cache.get(key);
         if (node != null) {
             return node.frequency + 1;
         } else {
             return 0;
         }
     }
     public void clear() {
         for (int i = 0; i <= maxFrequency; i++) {
             frequencyList[i].clear();
         }
         cache.clear();
         lowestFrequency = 0;
     }
     public int size() {
         return cache.size();
     }
     public boolean isEmpty() {
         return this.cache.isEmpty();
     }
     public boolean containsKey(int key) {
         return this.cache.containsKey(key);
     }
     private void initFrequencyList() {
         for (int i = 0; i <= maxFrequency; i++) {
             frequencyList[i] = new LinkedHashSet<CacheNode>();
         }
     }
     private void doEviction() {
         int currentlyDeleted = 0;
         double target = 1; // just one
         while (currentlyDeleted < target) {
             LinkedHashSet<CacheNode> nodes = frequencyList[lowestFrequency];
             if (nodes.isEmpty()) {
                 continue;
             } else {
                 Iterator<CacheNode> it = nodes.iterator();
                 while (it.hasNext() && currentlyDeleted++ < target) {
                     CacheNode node = it.next();
                     it.remove();
                     cache.remove(node.k);
                 }
                 if (!it.hasNext()) {
                     findNextLowestFrequency();
                 }
             }
         }
     }
     private void moveToNextFrequency(CacheNode currentNode, int nextFrequency,
                                      LinkedHashSet<CacheNode> currentNodes,
                                      LinkedHashSet<CacheNode> newNodes) {
         currentNodes.remove(currentNode);
         newNodes.add(currentNode);
         currentNode.frequency = nextFrequency;
     }
     private void findNextLowestFrequency() {
         while (lowestFrequency <= maxFrequency && frequencyList[lowestFrequency].isEmpty()) {
             lowestFrequency++;
         }
         if (lowestFrequency > maxFrequency) {
             lowestFrequency = 0;
         }
     }
     private class CacheNode {
         public final int k;
         public int v;
         public int frequency;
         public CacheNode(int k, int v, int frequency) {
             this.k = k;
             this.v = v;
             this.frequency = frequency;
         }
     }
    }
    

Similar problems

x

Tags

x

results matching ""

    No results matching ""